A Relative Oka-grauert Principle for Holomorphic Submersions over 1-convex Spaces
نویسنده
چکیده
This paper presents the proof of the relative Oka-Grauert principle for holomorphic submersions over 1-convex spaces using conic neighbourhoods of holomorphic sections over 1-convex spaces. A proof of a version of Cartan’s Theorem A for 1-convex spaces is also given.
منابع مشابه
The Levi Problem in the Theory of Functions of Several Complex Variables
The history of the Levi problem is described in the lecture of H. Grauert in this Congress and I shall not repeat it. We shall rather analyze the work of Oka [6] on this problem, and see how the underlying ideas are susceptible of generalization. Let D be an unramified domain over C, i.e. a connected complex manifold of dimension n together with a holomorphic map cp:D->C whose jacobian is nowhe...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملA Grauert Type Theorem and Extension of Matrices with Entries in H
In the paper we prove an extension theorem for matrices with entries in H (U) for U being a Riemann surface of a special type. One of the main components of the proof is a Grauert type theorem for “holomorphic” vector bundles defined over maximal ideal spaces of certain Banach algebras.
متن کاملOn Rigidity of Grauert Tubes
Given a real-analytic Riemannian manifold M there exists a canonical complex structure on part of its tangent bundle which turns leaves of the Riemannian foliation on TM into holomorphic curves. A Grauert tube over M of radius r, denoted as T rM , is the collection of tangent vectors of M of length less than r equipped with this canonical complex structure. We say the Grauert tube T rM is rigid...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کامل